a2 United States Patent

Yanagisawa

US009104495B2

(10) Patent No.:

(45) Date of Patent:

US 9,104,495 B2
Aug. 11, 2015

(54) SHARED RESOURCE SEGMENTATION

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventor: Hiroki Yanagisawa, Tokyo (JP)

INTERNATIONAL BUSINESS

MACHINES CORPORATION,

Armonk, NY (US)

(73) Assignee:

Notice:

")

U.S.C. 154(b) by 413 days.
2]
(22)

Appl. No.: 13/710,580

Filed: Dec. 11, 2012

(65) Prior Publication Data

US 2014/0165055 Al Jun. 12, 2014

Int. Cl1.
GO6F 13/00
GO6F 9/50
GO6F 9/48
U.S. CL

(51)
(2006.01)
(2006.01)
(2006.01)

(52)

CPC GO6F 9/5077 (2013.01); GO6F 9/4881
(2013.01); GOGF 2209/485 (2013.01); GO6F
2209/504 (2013.01); YO2B 60/142 (2013.01)

(58) Field of Classification Search

CPC ... GOGF 9/45533; GOGF 9/4881; GOGF 9/505;
GOGF 9/544
............................... 718/1, 105, 107; 719/312

USPC
See application file for complete search history.

(56) References Cited

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

2011/0283289 Al* 11/2011 Jayaramanetal. ... 718/104
2012/0198447 Al 8/2012 Osogami et al.

2012/0246646 Al* 9/2012 Bakman 718/1
2012/0266143 Al* 10/2012 Bhoovaraghavan etal. . 717/127
2012/0324112 Al* 12/2012 Dowetal. ...ccoeevvnnn. 709/226

2013/0067122 Al*

3/2013

710/22

FOREIGN PATENT DOCUMENTS

JP 2825850 B2 11/1998
JP 2004199561 A 7/2004
JP 2004252988 A 9/2004
JP 2010117760 A 5/2010
JP 2010140340 A 6/2010
JP 2010250689 A 11/2010
WO WO02009066481 Al 5/2009
OTHER PUBLICATIONS

Bichler, M., et al. “Capacity Planning for Virtualized Servers” Work-
shop on Information Technologies and Systems (WITS). Dec. 2006.

(6 Pages).

* cited by examiner

Primary Examiner — Andy Ho
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto, P.C.;

Vazken Alexanian

&7

ABSTRACT

Methods and systems for resource segmentation include
dividing a time horizon to be partitioned into time slots based
on a minimum partition size; determining resource usage for
multiple virtual machines in each of the plurality of time slots;
determining a set of partitioning schemes that includes every
possible partitioning of the time slots into a fixed number of
partitions; for each partitioning scheme in the set of partition-
ing schemes, determining a cost using a processor based on a
duration of each partition and a resource usage metric; and

U.S. PATENT DOCUMENTS

8,181,175 B1*
8,799,897 B2 *

5/2012 McKeeetal.ccooovvvennn 718/1
8/2014 Katiyaretal. ... 718/1

selecting a partitioning scheme that has a lowest cost.

23 Claims, 4 Drawing Sheets

Divide time horizon Into 1 slots

Determine resource usage for each VM
in each time slot

For each possible partitioning of time
slots, determine an area covered

Select a partitioning according to the
lowest area covered

U.S. Patent Aug. 11, 2015 Sheet 1 of 4 US 9,104,495 B2

~/-106 100
A I I I I I I
I I I I |J102
i i i i i el
A I I I I I I
T T T N R
| | A
I] >
|

| |
1 1
I I
0:00 4:00 8:00 12: 00 16 00 20:00 24:00

FIG. 1
200
50% 70% 50%
bt 1o
AT/ WS
i i | | i >
60% 20% 40%
A | | I I I I
' : e | | 104
| | | A
i i i>
| |

I |
| |
| |
0:00 4:00 8:00 12:00 16:00 20:00 24100

FIG. 2

U.S. Patent

Aug. 11, 2015 Sheet 2 of 4

3

| | | | | |
0:00 4:00 8:00 12:00 16:00 20:00 24:00

FIG. 3

Divide time horizon into n slots
402

Determine resource usage for each VM
in each time slot

404

Y

For each possible partitioning of time
slots, determine an area covered
406

Select a partitioning according to the
lowest area covered
408

FIG. 4

US 9,104,495 B2

U.S. Patent Aug. 11, 2015 Sheet 3 of 4 US 9,104,495 B2

Initialize all possible first
partitions
502

Output artitions
partitions remaining?
514 503
'/
END

Select next partition

504

Time
slots remaining?
506

Select the partition that had the
lowest summed cost
512

Select next time slot
507

Add cost of a partition that
Select possible previous extends from the previous
partition » partition to the time slot to the
509 previous partition cost
510

FIG. 5

U.S. Patent Aug. 11, 2015 Sheet 4 of 4 US 9,104,495 B2

Processor Memory
602 604
Cost Optimizing

module module
606 608

Partitioning system
600

FIG. 6

US 9,104,495 B2

1
SHARED RESOURCE SEGMENTATION

BACKGROUND

1. Technical Field

The present invention relates to computing resource shar-
ing and, more particularly, to segmentation of computing
resources between multiple virtual machines on a single set of
hardware.

2. Description of the Related Art

Virtualization allows service providers to run multiple vir-
tual machines (VMs) on a single server, such that each virtual
machine operates wholly independently of the others. How-
ever, the total computing capacity of the VMs on a single
server, whether that capacity is measured in processing
power, memory, or some other quantity, cannot exceed the
physical capacity of the hardware used to maintain the VMs.
Naturally, service providers wish to maximize the number of
VMs served with given hardware, because the cost of adding
VMs is small compared to the cost of adding new hardware.

Existing techniques for VM packing partition a time hori-
zon into multiple time slots, where each twenty-four hour
period may be split into, e.g., three blocks of eight hours each.
This partitioning may take into account differing levels of
resource usage depending on the time of day, such that VMs
with high needs during, e.g., an afternoon segment may be
placed on servers with VMs that have low needs during the
afternoon but high needs during the night. In some cases,
maximum CPU usage in a time slot is used to characterize the
VMs.

However, this partitioning is usually performed manually,
using fixed-length partitioning. For example, the time parti-
tions may be fixed at eight hours long. This leads to subopti-
mal partitioning in many cases, because a given partition may
not give the best results for a specific set of VMs. As such,
conventional partitioning may lead to a sub-optimal use of
available resources.

SUMMARY

A method for resource segmentation includes dividing a
time horizon to be partitioned into a plurality time slots based
on a minimum partition size; determining resource usage for
each of a plurality of virtual machines in each of the plurality
of time slots; determining a set of partitioning schemes that
comprises every possible partitioning of the time slots into a
fixed number of partitions; for each partitioning scheme in the
set of partitioning schemes, determining a cost using a pro-
cessor based on a duration of each partition and a resource
usage metric; and selecting a partitioning scheme that has a
lowest cost.

A method of resource segmentation includes dividing a
time horizon to be partitioned into a plurality time slots based
on a minimum partition size; determining resource usage for
each of a plurality of virtual machines in each of the plurality
of time slots; determining a set of partitioning schemes that
comprises every possible partitioning of the time slots into a
fixed number of partitions; for each partitioning scheme in the
set of partitioning schemes, determining a cost using a pro-
cessor based on a duration of each partition and a quantity that
characterizes resource consumption by a set of virtual
machines during said partition; and selecting a partitioning
scheme that has a lowest cost by progressively comparing
each partitioning scheme’s cost to a current lowest cost and
updating said current lowest cost when a partitioning scheme
having a lower cost is found.

10

40

45

55

2

A system for resource segmentation is shown that includes
a cost module comprising a processor configured to divide a
time horizon to be partitioned into a plurality time slots based
on a minimum partition size, to determine resource usage for
each of a plurality of virtual machines in each of the plurality
of time slots, to determine a set of partitioning schemes that
comprises every possible partitioning of the time slots into a
fixed number of partitions, and to determine a cost based on a
duration of each partition and a resource usage metric for each
partitioning scheme in the set of partitioning schemes; and an
optimizing module configured to select a partitioning scheme
that has a lowest cost.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is an exemplary virtual machine (VM) usage sce-
nario;

FIG. 2 is the exemplary VM usage scenario partitioned into
three partitions having fixed length, with costs calculated
according to the present principles;

FIG. 3 is the exemplary VM usage scenario partitioned into
three partitions having variable lengths with costs calculated
according to the present principles

FIG. 4 is a block/flow diagram of a method for optimally
partitioning resources according to the present principles;

FIG. 5 is a detailed block/flow diagram of a method for
optimally partitioning resources according to the present
principles; and

FIG. 6 is a diagram of a system for resource segmentation
according to the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present principles provide optimal partitioning meth-
ods and systems that divide fixed resources among different
processes according to time-sensitive resource usage. It is
specifically contemplated that the present embodiments may
be applied to the partitioning of virtual machines (VMs) on
servers in a multi-tenant system, but it should be recognized
that the principles may be extended to other types of data and
resource usage. For example, the present principles may be
applied to partitioning network bandwidth based on network
packet transmission history.

Referring now to FIG. 1, an exemplary VM resource usage
scenario 100 is shown. The present principles allow flexible
partitioning according to the needs of the particular VMs
being allocated. In the scenario shown, the resource usage
patterns of two VMs, 102 and 104, are shown over a twenty-
four hour time period. The time period is segmented into
blocks of four hours 106, representing an exemplary mini-
mum partition size. This minimum partition size can be
selected to be any size, and the determined partitions can be
any multiple of the minimum size. In this example, the
respective VMs use some percentage of the resources of a
given server at each point in time, but at no point do their
combined resource usages exceed 100% of said capacity. As
such, there exists some partitioning which will accommodate
both VMs in a single server.

US 9,104,495 B2

3

Referring now to FIG. 2, an exemplary partitioning 200 of
the VM resource usage scenario 100 is shown using fixed-
length partitioning. Each of the partitions is eight hours long,
and the maximum resource usage for each VM 102 and 104
during that time is employed as a metric for determining each
VM'’s needs. In this example, the partition lasting from 0:00
to 8:00 has a combined resource usage between VMs 102 and
104 that exceeds 100% of the capacity of the server. As a
result, this partitioning will force the two VMs 102 and 104
into separate servers, which is a sub-optimal partitioning.

Referring now to FIG. 3, an exemplary partitioning 300 of
the VM resource usage scenario 100 is shown using variable-
length partitioning according to the present principles. The
present principles consider all possible partitions of the time
horizon into a set number of parts using a minimum partition
size (in this case, four hours), including that shown in FIG. 2.
Inthe exemplary partition of FIG. 3, partitions are established
according to the four-hour minimum partition size, such that
the combined VM usage for a given partition stays within the
fixed resource capacity. By changing the length of partitions,

Referring now to FIG. 4, a method for variable-length
resource segmentation is shown. Block 402 takes a specified
time horizon and divides it into n slots according to a mini-
mum partition size. The time horizon reflects an expected
periodicity of resource usage. For example, if usage depends
on the time of day, the time horizon may be twenty-four hours
long with n=48 time slots that are each thirty minutes long.
Block 404 considers a set of VMs and determines a resource
usage for each VM in each time slot. This resource usage may
be determined according to any appropriate metric. In the
examples above, maximum CPU usage was shown as the
metric, but it is contemplated that other metrics may be used
such as, e.g., average CPU usage, bandwidth usage, memory
usage, etc. The metric may be chosen according to anticipated
use for the VMs. VMs engaged in a more computationally
intensive task may be partitioned according to CPU usage,
while webservers may be partitioned according to bandwidth
usage and databases may be partitioned according to memory
usage. The usage for each VM is characterized as the function
c(i,t;,t,), with 1 being an index for the VM in question and a
partition being defined as the time period [t,,t,]. Block 404
computes this function for every VM and every possible
partition. In the example of a twenty-four hour time horizon
with half-hour time slots, the function c(i,t,,t,) will be com-
puted 48> times for each VM i.

Block 406 considers every possible partition of time slots
and determines an area on, e.g., usage graph 100. This can be
represented as

p-1
E (Tj11 _[j)z c(i, 1, Tir1),
70 i

which finds a quantity for each possible partitioning, weight-
ing the resource usage in a given partition by the duration of
that partition. Block 408 minimizes this formulation, select-
ing a partitioning according to the lowest area covered.

Using the examples of the partitioning of FIGS. 2 and 3, it
can be seen how the above process selects a partitioning. In
FIG. 2, each partition is 8 hours long, so the weighted usage
of the two VMs 102 and 104 is 8(0.5+0.740.5)+8(0.6+0.2+
0.4)=23.2. The usage of the partitioning in FIG. 3 is (4-0.4+
80.7+12:0.5)+(4-0.6+8-0.3+12-0.4)=22.8. Because the parti-
tioning of FIG. 3 has the lower weighted usage, it is selected
over the less efficient partitioning shown in FIG. 2.

10

15

20

25

30

35

40

45

50

55

60

65

4

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be acomputer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a por-
table compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for aspects of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-

US 9,104,495 B2

5

cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
beloaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the blocks may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The present principles use one time slot as a fixed starting
time. However, this fixed starting time is arbitrary, so the
above method may be repeated once for every time slot. For
example, a first time slot could be at 0:00, 0:30, 1:00, etc. The
entire time horizon is split into p partitions, where the first
partition is [0,t,], the second is [t,,t,], and so on. The follow-
ing pseudo-code implements the present partitioning.

// Initialization for k = 1
fort=1ton
cost(1,t) = c(0,t)
end
// Compute for k (>1)
fork=2top
fort=kton
cost(k, t) = infinity
fort,=1tot-1
tempCost = cost(k—1,t,) + (t-ty)c(ty,t)
if tempCost < cost(k,t)
cost(k,t) = tempCost
previous(k,t) = t,
end
end
end
end
// output the result
t=n
fork=ptol
output t
t = previous(k,t)
end

25

40

45

50

55

60

65

6

The functions used in the above pseudo code include c(t,,
t,), which denotes the total resource usage of all VMs in the
time interval [t;,t,], cost(k,t), which denotes the minimum
objective value of partitioning the time horizon [0, t] into k
partitions, and previous (k,t), which gives the starting time of
the k™ time slot when the time horizon [0, t] is partitioned into
k partitions. This pseudo-code progressively builds the parti-
tioning table, starting with an explicitly initialized first parti-
tion, k=1.

Referring now to FIG. 5, a method that reflects the above
pseudo-code is shown. Block 502 initializes all possible first
partitions. This initialization includes setting an initial cost
for each partition that starts at the first time slot. As described
above, this initial cost may represent, e.g., the maximum CPU
usage in that slot or may be based on any other appropriate
metric. Block 503 begins aloop that determines whether there
are additional partitions left to allocate. The number of par-
titions is set, as described above, according to the parameter p.
If more partitions remain unallocated, block 504 selects the
next partition.

Block 506 begins a nested loop over the remaining time
slots, starting with the time slot having an index that corre-
sponds with the partition number. For example, if the second
partition is being processed, then block 507 begins with the
second time slot. Block 508 begins a nested loop over the
possible previous partitions either previously initialized or
previously processed in an earlier loop iteration. Block 509
selects a next possible previous partition, and block 510 uses
the cost of that possible previous partition to determine a
temporary cost by adding a cost of the present partition under
consideration. Processing then returns to block 508 to deter-
mine whether there are more possible previous partitions
remaining.

If no previous possible partitions remain to be checked,
processing returns to block 506. Block 506 determines
whether there are additional time slots to check—if not, block
512 selects the partition that had the lowest summed cost. It
should be noted that the selection of block 512 may be per-
formed according to any appropriate selection method. The
pseudo-code above describes a progressive search, where a
temporary cost is updated whenever a lower cost partition is
found. While it is believed that this search is computationally
efficient, it should not be considered limiting. After selecting
a partition at block 512, processing returns to block 503,
which determines whether additional partitions need to be
determined. If not, block 514 outputs the partitions that were
found and terminates processing. It is worth nothing that the
above methods are computationally efficient. For example, in
one simulation an optimal partitioning for 100,000 VMs in 24
time slots was found in short time using a state-of-the-art
workstation.

Referring now to FIG. 6, a partitioning system 600 is
shown. The partitioning system 600 includes a cost module
606, which uses processor 602 to determine a cost for a
particular partition scheme based on resource usage data
stored in memory 604. Cost module 606 considers every
possible partitioning of a given time horizon into p partitions
according to a minimum partition size. Optimizing module
608 then finds the minimum cost of all the possible partitions
using processor 602. In the case that multiple partitioning
schemes have the same cost, any appropriate tie-breaker may
be employed. In the present case, the first such scheme having
the minimum cost that is discovered is used. In practice, the
limiting factor that controls the number of VMs and time slots
that may be scheduled by a partitioning system 600 depends
on the size of memory 604 of the system 600, rather than the
CPU speed.

Having described preferred embodiments of a system and
method for shared resource segmentation (which are intended
to be illustrative and not limiting), it is noted that modifica-

US 9,104,495 B2

7

tions and variations can be made by persons skilled in the art
in light of the above teachings. It is therefore to be understood
that changes may be made in the particular embodiments
disclosed which are within the scope of the invention as
outlined by the appended claims. Having thus described
aspects of the invention, with the details and particularity
required by the patent laws, what is claimed and desired
protected by Letters Patent is set forth in the appended claims.

What is claimed is:

1. A method for resource segmentation, comprising:

dividing a time horizon to be partitioned into a plurality

time slots based on a minimum partition size;
determining resource usage for each of a plurality of virtual
machines in each of the plurality of time slots;
determining a set of partitioning schemes that comprises
every possible partitioning of the time slots into a fixed
number of partitions;
for each partitioning scheme in the set of partitioning
schemes, determining a cost using a processor based on
a duration of each partition and a resource usage metric;
and

selecting a partitioning scheme that has a lowest cost.

2. The method of claim 1, wherein determining the cost
comprises multiplying a duration for a partition by a quantity
that characterizes resource consumption by a set of virtual
machines during said partition.

3. The method of claim 2, wherein the quantity that char-
acterizes resource consumption is a percentage of resource
capacity used, combined across the set of virtual machines.

4. The method of claim 2, wherein the quantity that char-
acterizes resource consumption is a maximum processor
usage during the petition.

5. The method of claim 2, wherein the quantity that char-
acterizes resource consumption is a maximum memory usage
during the petition.

6. The method of claim 1, wherein each time slot is sized at
the minimum partition size.

7. The method of claim 1, wherein the partitioning scheme
that has the lowest cost corresponds to an optimal packing of
the virtual machines.

8. The method of claim 1, wherein selecting comprises
progressively comparing each petitioning scheme’s cost to a
current lowest cost and updating said current lowest cost
when a partitioning scheme having a lower cost is found.

9. A method of resource segmentation, comprising:

dividing a time horizon to be partitioned into a plurality

time slots based on a minimum partition size;
determining resource usage for each of a plurality of virtual
machines in each of the plurality of time slots;
determining a set of partitioning schemes that comprises
every possible partitioning of the time slots into a fixed
number of partitions;

for each partitioning scheme in the set of partitioning

schemes, determining a cost using a processor based on
a duration of each partition and a quantity that charac-
terizes resource consumption by a set of virtual
machines during said partition; and

selecting a partitioning scheme that has a lowest cost by

progressively comparing each petitioning scheme’s cost
to a current lowest cost and updating said current lowest
cost when a partitioning scheme having a lower cost is
found.

10. The method of claim 9, wherein the quantity that char-
acterizes resource consumption is a percentage of resource
capacity used, combined across the set of virtual machines.

10

15

40

45

50

8

11. The method of claim 9, wherein the quantity that char-
acterizes resource consumption is a maximum processor
usage during the petition.

12. The method of claim 9, wherein the quantity that char-
acterizes resource consumption is a maximum memory usage
during the petition.

13. The method of claim 9, wherein each time slot is sized
at the minimum partition size.

14. The method of claim 9, wherein the partitioning
scheme that has the lowest cost corresponds to an optimal
packing of the virtual machines.

15. A system for resource segmentation, comprising:

a cost module comprising a processor configured to divide
atime horizon to be partitioned into a plurality time slots
based on a minimum partition size, to determine
resource usage for each of a plurality of virtual machines
in each of the plurality of time slots, to determine a set of
partitioning schemes that comprises every possible par-
titioning of the time slots into a fixed number of parti-
tions, and to determine a cost based on a duration of each
partition and a resource usage metric for each partition-
ing scheme in the set of partitioning schemes; and

an optimizing module configured to select a partitioning
scheme that has a lowest cost.

16. The system of claim 15, wherein the cost module is
configured to multiply a duration for a partition by a quantity
that characterizes resource consumption by a set of virtual
machines during said partition to determine the cost.

17. The system of claim 16, wherein the quantity that
characterizes resource consumption is a percentage of
resource capacity used, combined across the set of virtual
machines.

18. The system of claim 16, wherein the quantity that
characterizes resource consumption is a maximum processor
usage during the petition.

19. The system of claim 16, wherein the quantity that
characterizes resource consumption is a maximum memory
usage during the petition.

20. The system of claim 15, wherein each time slot is sized
at the minimum partition size.

21. The system of claim 15, wherein the partitioning
scheme that has the lowest cost corresponds to an optimal
packing of the virtual machines.

22. The system of claim 15, wherein the optimizing module
is further configured to progressively compare each petition-
ing scheme’s cost to a current lowest cost and updating said
current lowest cost when a partitioning scheme having a
lower cost is found.

23. A non-transitory computer readable storage medium
comprising a computer readable program for resource seg-
mentation, wherein the computer readable program when
executed on a computer causes the computer to perform the
steps of:

dividing a time horizon to be partitioned into a plurality
time slots based on a minimum partition size;

determining resource usage for each of a plurality of virtual
machines in each of the plurality of time slots;

determining a set of partitioning schemes that comprises
every possible partitioning of the time slots into a fixed
number of partitions;

for each partitioning scheme in the set of partitioning
schemes, determining a cost using a processor based on
a duration of each partition and a resource usage metric;
and

selecting a partitioning scheme that has a lowest cost.

#* #* #* #* #*

